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Case 5 - Determination of fat content in donuts after frying
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1 Introduction

In the food processing industry, ensuring high-quality standards is becoming increasingly challenging
due to more stringent safety regulations and customer demands, as well as the limitations of manual
quality inspections. To address this, computer vision technology has been increasingly used for
inline quality control, offering high-speed processing and repeatability. The near-instant result of a
computer vision-based prediction creates a large advantage over current wet chemistry techniques, by
enabling faster responses on deviating quality metrics but also increasing the total share of reviewed
products in comparison to the full production volume.

However, the implementation of computer vision-based algorithms for natural products still lags
compared to other industrial sectors. The core cause of this issue lies in the complex visual structure
and heterogeneity of textures and colors of these natural products.

The objective of this study is to investigate the potential of machine learning-based regression
using features extracted from near-infrared (NIR) hyperspectral imaging for the non-invasive and
inline prediction of fat and moisture concentration in bakery products. This is motivated by different
factors. First of all, European law mandates accurate labeling of ingredient quantities, and this
regulation extends to bakery products. The production process of bakery products typically results
in slight fluctuations in raw materials and ingredient concentration during the process. The tolerance
for fat is set to 20% for products containing 10-40g of fat per 100g [1]. However, these fluctuations can
significantly impact the flavor, aroma, texture, and calorie content of bakery products, resulting in a
different taste experience for consumers. Therefore, there is a need for even more stringent quantity
requirements than those mandated by European law. Furthermore, the conventional approaches
typically consist of manual, destructive tests, due to which only part of the products can be inspected,
which could be improved by adopting an inline, non-invasive quality control methodology.

Traditional RGB cameras are not suitable for capturing subtle variations in natural products that
the human sensory organs and brain are evolutionary trained on. Therefore, hyperspectral imaging
is employed to capture the impact on a large range of spectral bands in visible and near-infrared
light. For the case under consideration, a subsample of the full NIR hyperspectral spectrum contains
the absorption response of moisture and fat, and specific wavelength bands exhibit a higher response
variation based on the molecular structure and chemical concentration of various components. The
focus of this work is on investigating the correlation between these wavelength bands and production
process parameters, including shortening fat concentration, proofing duration, and frying duration.

2 Literature study

Recent studies have shown that infrared hyperspectral analysis could be a promising technique for
non-invasive and inline fat content determination in bakery products. Infrared hyperspectral analysis
involves the use of an infrared spectrometer to measure the absorption of light by molecules in the
sample. The technique can provide information about the chemical composition of the sample and
can be used to determine the fat content.

In past studies, NIR spectroscopy and Fourier-transform NIR spectroscopy have been proposed
to measure content characteristics of wheat, wheat dough and bakery products. Mishra et al.
(2012) [2] investigated the use of infrared hyperspectral analysis for rapid assessment of quality
change and insect infestation in stored wheat grain using Fourier transform-NIR Spectroscopy. The
study showed that the technique was accurate and reliable, with a R2 of 0.901, 0.938 and 0.895
respectively for the prediction of moisture, protein and uric acid. Similarly, a study by Szigedi et al.
(2011) [3] used Fourier-transform NIR spectroscopy to determine protein, lipid and sugar contents
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of bakery products. Based on the results, the technique proved to be accurate and could be used as
a method for assessing the quality of wheat flour with a correlation of 99.07 for lipid determination.

Gomes et al. (2020) [4] employed hyperspectral imaging (HSI) to identify olive varieties from
satellite hyperspectral sensors. It succeeded in successfully visualizing the distinction between vari-
eties with an overall accuracy of 81.23. Similar work is presented by Jiang et al. (2020) [5] where the
researchers predicted the leaf lard adulteration in minced pork by partial least squares regression on
hyperspectral data. This resulted in a correlation of 0.98 on a selected subset of the full spectra.

This case investigates the potential of machine learning-based regression models and correspond-
ing feature selection techniques to improve upon the existing approaches for determining fat and
moisture levels in bakery products. In combination with the latest advancements in hyperspectral
imaging and image processing on the broad and well-studied domain of spectroscopy on bakery
products for ingredient content determination, this results in an alternative technique for accurate,
inline and non-invasive measurements in high-volume production processes.

3 Methodology

This section details the proposed methodology for fat and moisture concentration prediction based
on NIR hyperspectral images. A first important aspect is the preprocessing of the raw hyperspectral
data. This includes the correction of variations in sensor sensitivity, the alignment of the spectral
bands and the removal of unwanted variations. Also a number of transformations are applied on the
original preprocessed dataset. More specifically, its first and second derivatives are considered to
exploit small variations between the wavelengths for the prediction. Finally, this is served as input
for a Partial Least Squares regression and a Least- Squares Support Vector Machine to predict the
fat and moisture concentration.

3.1 Spectral transformation

In order to account for variations in the sensitivity of the sensor and obtain accurate image measure-
ments, a first step is to apply a flat-field correction method on the raw images [6–8]. This method
involves correcting the raw image R using images of the white F and dark D references taken prior
to the start of data collection. The process of correcting the raw image involves calculating the
corrected image C, which is achieved according to (1). The flat-field correction method ensures
that any variations in sensor sensitivity are accounted for, resulting in a more accurate and reliable
image. The use of this correction method is critical in image analysis applications, including the
analysis of the samples in this study.

C =
(R−D)

(F −D
(1)

Two major factors of variability between different spectral images were anticipated by image pre-
processing: reflection variability between images and irradiance differences for all measured spectra.
In order to obtain accurate and reliable measurements, the raw spectra underwent several signal
preprocessing techniques aimed at identifying the most effective method for aligning the spectral
bands to equal magnitude and offset. Two widely used preprocessing techniques, Multiplicative
Scatter Correction (MSC) and Standard Normal Variate (SNV), were implemented and employed
in this study. MSC is a data preprocessing technique commonly used in spectroscopy to remove
the effect of scattering and interference, such as moisture or other impurities from the spectra. A
linear regression is fitted for each spectrum against a reference spectrum by least squares, as shown
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in (2). This reference spectrum is typically generated by averaging the spectra of a set of standard
samples with similar scattering and interference characteristics [9]. The MSC-corrected spectra are
determined by (3).

Xi = ai + biXm (2)

Xmsc
i =

(Xi − ai)

bi
(3)

On the other hand, the SNV technique involves normalizing the data by subtracting the mean
and dividing by the standard deviation, with the aim of removing any unwanted variations, as shown
in (4). Unlike MSC, SNV does not require a reference spectrum [10].

Xsnv
i =

(Xi −Xi)

σi
(4)

By utilizing both MSC and SNV, this study was able to effectively preprocess the raw data and
identify the optimal method for extracting the features needed for accurate determination of fat
content.

As a data transformation preprocessing step, the first and second derivative of the data are
added and compared to the non-derived dataset. These transformations allow to focus on the small
variations between the wavelengths.

In order to assess the quality of the data and identify potential outliers, two measures were
calculated for each data series: the mean squared error (MSE) to the mean and the Mahalanobis
distance, respectively shown in (5) and (6). The MSE provides a measure of the average difference
between the data points and the mean value, while the Mahalanobis Distance takes into account the
covariance between the variables in the data set.

MSE =
1

n

n∑
n=i

(Xi −Xi)
2 (5)

MD =

√
(X −X)V −1(X −X)⊤ (6)

To identify and remove outliers from the data, an empirically-determined filtering threshold was
applied to the MSE and Mahalanobis distance metrics. Specifically, any data points with an MSE
greater than 0.02 or a Mahalanobis distance greater than 0.5 were flagged as outliers and removed
from the data set. By filtering the data in this manner, the study was able to ensure the reliability
and accuracy of the results, as well as minimize the impact of any spurious or erroneous data points.

3.2 Machine Learning-based regression

The task of predicting the moisture and fat content of the samples in the dataset relies on an approach
in which several supervised learning methods were tested in order to obtain an accurate regression
model. Given the strengths and weaknesses of each algorithm and how well they fit both the dataset
and problem, a set of two algorithms was retained and compared, namely Partial Least Squares
regression (PLS-R) and Least-Squares Support Vector Machine (LS-SVM). PLS regression is the
most commonly used method in near-infrared spectroscopy, as it is an efficient linear multivariate
algorithm for spectral data. However, PLS may be limited for regression on more complex data such
as noisy signals, low concentrations, and non-linear correlations [11–13].
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The algorithm involves the vector Y, which represents the properties as determined by reference
methods, the matrix X, which is formed by the calibration spectra vectors, and the vector b, which
represents the predicted values of the unknown quantities, as shown in Equation 7.

−→
Y = X · −→b (7)

The Least Squares Support Vector Machine (LS-SVM) is a kernel-based learning method that,
as the name indicates, is a least-squares version of SVMs. It solves a set of linear equations instead
of a convex quadratic programming problem for classical SVMs [14].

3.3 Evaluation

Two measures were used for scoring the overall performance of the model. Root mean square error
of cross-validation (RMSECV ) and root mean square error of prediction (RMSEP ) during test
validation are the criteria based on which the performance of the final models was evaluated in
association with the determination coefficients (R2

CV and R2
P ).

RMSECV =

√∑n
i=1 (yi − ŷi)

2

n
(8)

R2 =

(
1−

∑
[yi − ŷi]

2∑
(yi − yi)

2

)
× 100 (9)

where yi represents the measured content of the sample, ŷi is the predicted content of the sample,
yi is the mean measured content, and n represents the number of samples.

4 Experimental Validation Setup

The experimental design used to validate the proposed approach targets to comprehensively explore
the impact of different process parameters on the quality of the bakery products (i.c., donuts), with
the ultimate goal of optimizing the process to achieve superior quality and consistency of the finished
product. The extensive dataset generated through this experiment provides valuable insights into
the relationships between the key process parameters and their impact on the quality attributes of
donuts.

The measurements were carried out in February 2023 at the Vandemoortele Research and De-
velopment Center in Izegem, Belgium.

4.1 Samples

The full dataset is composed of 719 samples with reflectance percentage data for each of the 256
intervals between 1100-2100 nm.

The produced samples aim to assess the impact of three key factors, namely the mass concentra-
tion of shortening, proofing duration, and frying duration, on the fat content of donuts after frying.
To this end, a total of 45 distinct parameter sets were designed, with each parameter set comprising
varying levels of shortening mass concentration (ranging from 0% to 8% at 2% intervals), proofing
duration (at 26, 38, and 50 minutes), and frying duration (at 92, 138, and 184 seconds). The frying
duration is achieved by controlling the number of flips that are made by the operator during frying.
As each flip takes 46 seconds, the frying duration can also be represented as 2, 3, and 4 flips.
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(a) (b) (c)

Figure 1: The raw data (1a) is preprocessed by MSC-correction (1b) and outlier (red) filtering (1c)

To account for any potential variability in the production process, four donuts were produced
for each of the 45 parameter sets, leading to a total of 180 donuts being evaluated in the study.
The measurements were conducted at two different stages, immediately after frying and one hour
after frying when the donuts were cooled. Both the top and bottom portions of each donut were
measured to assess fat migration and settling during cooling. The total number of measurements
obtained was 719. One sample was lost due to a technical malfunction of the software.

4.2 Sample preparation and measurement

In accordance with the predetermined experimental design, the preparation of the donut samples was
carried out in a sequential manner, utilizing manual techniques that closely emulate those employed
in the industrial process. The donuts were grouped into batches of twelve, with each batch ordered
based on the amount of shortening fat and proofing duration.

Following frying, each batch was carefully measured on both the top and bottom sides to evaluate
their respective quality attributes. Once the frying process was complete, the samples were allowed
to cool down to room temperature before being subjected to a second round of measurements to
ensure the consistency and reliability of the data obtained.

To prevent any interference from residual material on the sample surface, a paper towel was used
to remove any remaining residue between measurements. The experimental setup and methodol-
ogy used in this study were designed to ensure that the data obtained accurately reflects the true
quality attributes of the donut samples, and can serve as a reliable basis for further analysis and
interpretation.

4.3 NIR Hyperspectral measurement system

The samples were analyzed using the Polytec Advanced Spectrometer (PAS)-2120 NIR spectrometer
equipped with the PAS-H-B01 contact sensor head. The PAS spectrometers are widely recognized as
an optimal solution for NIR process analytics challenges. The devices employ diode array detector
technology in combination with a transmission grating design, enabling fast and reliable data acqui-
sition. The PAS spectrometer works in the 1100-2100 nm wavelength range with 256 subdivisions,
resulting in a resolution of less than 7.9 mm. The utilization of the Polytec PAS spectrometer and
its specialized contact sensor head enabled accurate and precise analysis of the samples [15].
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4.4 Reference analysis

Moisture and fat content determination were performed on the same sample obtained by mixing
two donuts together using a Thermomixer for 6 seconds at the maximum level. After mixing, the
sample was stored in a sealable plastic bag to prevent moisture loss.

Fat content of the samples was determined using the Weibull-Stoldt method on 15 ± 0.01 g
mixed sample. After acid destruction of the sample using 37 % HCl at 200 °C for 4 hours at a
mixing speed of 200 rpm, the mixture was filtered using approximately 800 ml water until a neutral
pH was obtained. The residue was dried overnight at 85 °C after which it was applied in a Soxhlet
extraction using a 3/2 mixture of hexane and isopropanol for 6 hours at 300 °C. The extracted fat
and solvent were distilled in a rotavapor until no solvent was remaining. The remaining fat was
weighed and, by means of the initial sample weight, converted to a relative amount of fat in the
sample.

Moisture of the sample was determined by drying 5 ± 0.001 g of mixed sample overnight at 103
± 2 °C in a drying oven. Dried samples were cooled down for a minimum of 1 hour in a desiccator
after which they were weighed again. In analogy to the fat content, the relative moisture content
was calculated by dividing the dry sample weight by the initial sample weight.

5 Results

The study observed not only the desired variation in fat concentration but also variations in the
crust texture, moisture content, dough distribution, and size of the donut. This variation was caused
by the intentional discrepancies in the dough ingredients and processing steps, i.e. the shorting fat
concentration, frying duration and proofing duration. The results initially center around an initial
analysis and interpretation of the absorption spectra. Subsequently, the fat and moisture content
were determined via multiple preprocessing steps and fitted to two models, namely PLS-R and LS-
SVM. In the final section, the benefits of incorporating feature elimination are demonstrated through
an increase in accuracy.

5.1 Interpretation of absorption spectra

The raw signals originating from 719 recorded samples during the experiment phase are plotted in
Figure 1a. A large offset and magnitude difference can be seen between the signals. By implementing
MSC and SNV respectively the samples could be aligned. This results in a better sample set to
extract features from the data as seen in Figure 1b. The dataset contains a small number of false
measurements, caused by incorrect alignment of the dough over the sensor or false triggers of the
sensor. Seven outliers could be deduced by implementing thresholds to the Mean Squared Error
(MSE) and Mahalanobis distance. Figure 1c shows the removed outliers compared to the dataset.
The resulting outliers were identical for both MSE and Mahalanobis distance. The remaining 712
samples were used for further analysis.

Changes in the fat content of bakery dough result in alterations in the spectral absorption
across multiple wavenumber ranges. Several peaks exhibit minimal variations between different sets
of process parameters. For samples with zero percent shortening fat concentration, the absorption
spectra grouped by frying duration, as shown in Figure 2, reveal a negative linear correlation between
frying duration and intensity in the 1900-1975 nm range. The intensity shifts around 1925 nm
suggesting a lower absorption for that spectral band as the frying process progresses. The entire
dataset displays similar trends in different spectral bands, where a linear correlation can be observed
between the process parameters and the spectral response. Again looking at Figure 2, no singular
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Figure 2: The average spectral response with a confidence interval of 68% for 92, 138, 184 minutes
of frying with no added shortening fat. %.

wavelength clearly shows with high confidence a high linear relation. This indicates the need to
extract and combine multiple indicative wavelengths to predict a single label.

5.2 Determination of fat content

The fat content of the samples was between 21.1 and 70.7 %dm, as established by the Weibull-Stoldt
method. MSC and SNV were used with no additional preprocessing, next to the first derivative (FD)
and second derivative (SD). In total six combinations of preprocessing techniques were implemented
and compared in Table 1: MSC, SNV, MSC + FD, MSC + SD, SNV + FD, and SNV + SD.

For the regression modeling, a cross-validation strategy was adopted, by splitting the dataset into
five folds and rotating the training and validation among these folds. The PLS-R model achieves a
consistent accuracy over the preprocessing techniques with SNV having a small improvement over
MSC. Taking the first and second derivatives for the PLS-R model again improves the accuracy by
a small margin. For the LS-SVM on the other hand, the model is unable to create a valid result
from the first and second derivative transformations. Overall the combination with the best result
is the LS-SVM with SNV preprocessing, resulting in an R2 and RMSE of 0.65 and 7.67 respectively
for the cross-validation, although this is only a minor improvement over the PLS-R model results
with SNV and second derivative.

5.3 Determination of moisture content

As a reference, the moisture content of the samples is determined by measuring the weight before
and after a drying step to values between 12.1 and 33.2 %. Table 2 shows the resulting metrics for
the different preprocessing techniques that are implemented. Analogous to the fat content, SNV
results in a small accuracy gain over MSC for each derivative step. Similarly, the derivatives show a
small improvement in accuracy over the previous step. The LS-SVM model shows no improvement
on the datasets preprocessed with MSC and SVN, with again no valid fit for the derived functions.
The overall best result is the SNV and second derivative fitted to the PLS regression model with a
R2 of 0.64 and RMSE of 3.11 for the cross-validation.
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Table 1: Cross-validation and prediction metrics of different models and preprocessing methods for
the deterimination of fat

Model Preprocessing Cross-validation Prediction
Rc2 RMSECV(%) Rc2 RMSEP(%)

PLSR MSC 0.59 8.21 0.73 7.44
SNV 0.60 8.09 0.73 7.48
MSC + FD 0.61 8.03 0.69 7.93
MSC + SD 0.62 7.82 0.69 8.05
SNV + FD 0.61 7.99 0.69 7.94
SNV + SD 0.64 7.70 0.70 7.78

LS-SVM MSC 0.61 8.00 0.71 7.68
SNV 0.65 7.67 0.70 7.80
MSC + FD -0.01 13.11 -0.01 14.46
MSC + SD -0.04 13.27 -0.04 14.63
SNV + FD 0.14 12.07 0.17 13.08
SNV + SD -0.04 13.26 -0.04 14.62

Table 2: Cross-validation and prediction metrics of different models and preprocessing methods for
the deterimination of moisture

Model Preprocessing Cross-validation Prediction
Rc2 RMSECV(%) Rc2 RMSEP(%)

PLSR MSC 0.61 3.25 0.81 2.52
SNV 0.62 3.21 0.82 2.50
MSC + FD 0.63 3.15 0.81 2.55
MSC + SD 0.63 3.14 0.80 2.59
SNV + FD 0.63 3.16 0.80 2.58
SNV + SD 0.64 3.11 0.82 2.49

LS-SVM MSC 0.61 3.26 0.78 2.72
SNV 0.63 3.18 0.77 2.80
MSC + FD -0.02 5.31 0.00 5.83
MSC + SD -0.05 5.37 -0.02 5.90
SNV + FD 0.14 4.87 0.20 5.23
SNV + SD -0.05 5.37 -0.02 5.90

5.4 Spectral band selection

Training the regression models on the full dataset induces a risk of overfitting. The highly correlated
and sparse data contains a low information density for the models to infer the predictions. The
results can be further improved by employing backwards feature elimination. This is validated on
the highest-scoring configurations of both models; i.e., PLS-R (SNV + SD) and LS-SVM (SNV).

As seen in Figure 3 for each of the four selected configurations the accuracy is lower when using
a very low or high number of features. For instance, the fat prediction with the PLS-R (SNV +
SD) after backwards feature elimination of 81 features achieves a R2 of 0.90. This is a significant
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Figure 3: Accuracy of a PLS-R (dashed) and LS-SVM (full) for fat content (red) and moisture
content (blue) each step in the feature elimination process

Table 3: Cross-validation and prediction metrics of PLSR (SNV + SD) and LS-SVM (SNV) for the
deterimination of fat and moisture after feature selection

Label Model Number of Cross- Prediction
(preprocessing) features validation

Rc2 RMSECV(%) Rc2 RMSEP(%)
Fat PLSR (SNV + SD) 81 0.89 4.20 0.92 3.8

LS-SVM (SNV) 79 0.68 7.32 0.75 7.14
Moisture PLSR (SNV + SD) 60 0.88 1.83 0.92 1.61

LS-SVM (SNV) 63 0.68 2.96 0.83 2.39

improvement over the R2 of 0.64 achieved with 256 features selected.
After this step, the best-achieving results of Table 1 and 2 could be improved to the values listed

in Table 3.

6 Discussion

In this study, both a partial least squares regression and least squares support vector machine analysis
was performed on spectral data obtained from 719 samples of donuts with varying fat and moisture
contents. Several combinations of preprocessing techniques (MSC, SNV) and data transformations
(first and second derivative) were evaluated in the selection of the best predictive model.

From the PLS-R results for the fat content prediction, the best determination coefficient obtained
was 0.64 with SNV and second derivative, whereas LS-SVM performed slightly better than the PLS-
R models with a R2 of 0.65. Looking at the results of the determination of moisture content, the
PLS-R model with SNV and second derivative results in a better determination coefficient of 0.64
in comparison to the LS-SVM with 0.63, yet again the difference is small.

Comparing the preprocessing correction techniques, SNV has an overall edge on MSC for all
preprocessing techniques and models. Lastly, the derivatives do show a minor improvement with
respect to the non-derived data. The first derivatives and second derivatives show an improvement
of 0.02 and 0.02-0.04 of R2 respectively.
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Lastly, by incorporating backward feature elimination for the best-achieving models the accuracy
increases by a significant margin. The higher accuracy increase of the PLS-R model after selecting
the ideal subset of features in comparison to the LS-SVM shows that PLS-R is more prone to
overfitting on high-dimensional data. After feature selection, the PLS-R gains a significant margin
over the LS-SVM model.

It can be noted that the accuracy of this approach is not yet on par with the current state-of-
the-art chemical method in terms of accuracy. For determining the fat content in these samples,
the best approach reaches a determination coefficient of 0.89 with an RMSECV of 4.20, while the
employed Weibull-Stoldt method of the reference analysis achieves an RMSECV van 1.44. Yet, the
achieved accuracy can be deemed sufficient for a non-invasive primary quality control that can be
executed inline.
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