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1 Introduction

Due to recent technological advancements and the emergence of more efficient production meth-
ods, both semi-finished and finished products are being produced on a larger scale. Depending on
the production speed, it can be challenging for operators to monitor the quality of the products
constantly.

To address this issue, machine vision can be used. A camera with appropriate lighting can
capture images of the products, which are then analyzed and interpreted by a model. Designing a
machine vision system that is tailored to the specific case is crucial. On the hardware side, there
are many different types of cameras and lighting types to choose from. On the software side, both
data-driven and non-data-driven techniques can be applied.

Implementing a machine vision system in a production line offers several advantages. The most
obvious is that the quality control is less biased than when performed by a human operator. A
machine vision system is not affected by fatigue or lack of concentration, which can be issues for
human operators who perform the same task repeatedly. Additionally, an experienced operator may
be more in touch with the quality control of a certain product than a newly hired operator. Due
to the speed of the production process, it may be impossible to check each product individually.
This can lead to samples being taken by the operator to test the quality. However, a machine vision
system that can check and classify each product individually also can offer a remedy. The advantage
of individual quality control is that bad quality products are much less likely to reach the costumer
and consumer. This reduces financial losses and helps maintain the company’s image.

This report examines the quality of ice cream cones, which is mainly determined by the topping
consisting of sauce and/or nuts/curls. The production process of such ice cream cones is shown in
Figure 1.1. The spread of the topping is an important factor in determining the quality of the ice
cream cone. Due to the complexity of this determination, we have been assigned to use data-driven
techniques for this classification task.

I I

Figure 1.1: A production line of ice cream cones equipped with a machine vision system.

First, we review some existing solutions for similar types of classification/segmentation problems
in Section 2. Next, we discuss our methodology in Section 3. We start with how we captured and
analysed the image data. Then, we show how we pre-processed the raw data to obtain a dataset
for training a Convolutional Neural Network (CNN). We also present some models that are suited
for our use case. We use transfer learning to train them. Two different approaches are suggested
here. The first approach is a binary classification problem, where the two labels relate to the general
quality, namely good and bad. The second approach is a multi-label classification problem. Here, the
model predicts two labels, one for the sauce quality and one for the nuts/curls quality. To introduce
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more explainability, we also investigate segmentation methods that we can use in combination with
our trained models. We conclude our methodology with the metrics that we use to determine the
performance of our trained models. These metrics need to be able to deal with an imbalanced
dataset. The results of both approaches and segmentation are presented and discussed in Section 4.
Finally, we give a conclusion of this report in Section 5.
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2 Literature Study

This literature study examines two research papers that are relevant to our classification problem.
Unfortunately, to the best of our knowledge, no research has been conducted on the classification
of ice cream cones based on their quality. Therefore, in Section 2.1, we discuss the application of a
Convolutional Neural Network (CNN) for the quality classification of Copra. This case is similar to
ours based on the relevance of visual features that determine the quality of the product. In Section
2.2, we explore how we can segment pizza toppings using the stick growing and merging algorithm.
Just like the pizzas, the ice cream cones also contain overlapping toppings and are very similar in
this sense.

2.1 Classification

In this section, we investigate the application of a CNN for the quality classification of copra. Copra
is the dried kernel of a coconut that produces coconut oil and copra meal as a by-product. The
process to arrive at such a CNN] that is able to classify the quality of copra, is divided into three main
parts, namely image acquisition, image pre-processing and network training. These are discussed in
the following sections [1].

2.1.1 Image Acquisition

Based on several characteristics, such as the color of the copra, the extraneous matter and the
aflatoxin-related molds (ARM), the copra can be divided into three different grades of quality.
Table 2.1 shows these grades with their corresponding characteristics.

Characteristics Grade 1 Grade 2 Grade 3
Color of meat White to pale yellow | Brown to dark brown | Brown to dark brown
Extraneous matter (% max) 0.25 0.75 1.00
ARM (% max) 0 10 20

Table 2.1: Classification based on characteristic quality of copra [1].

A camera is mounted parallel to the surface at a distance of 0.3 m. The copra samples are placed
on a solid blue background and the raw images are stored in the subfolders corresponding to their
quality grade. For each quality grade, 450 images are obtained from different copra samples. This
results in a dataset of 1350 images.

2.1.2 Image pre-processing

The raw images are pre-processed before they are fed to the neural network. The pre-processing
steps are:

1. Image enhancement:
The raw images are cropped and subsequently resized from 1280 x 1280 pixels to 512 x 512
pixels. This is done to limit the computational cost needed for training the model.

2. Image segmentation:
Due to the use of a solid blue background, the background colour is thresholded. This results
in a binary mask of the copra sample. This is done to clearly define the region of interest. The
result of the background removal is shown in Figure 2.1.
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Figure 2.1: Background removal by segmenting the background and the copra using thresholding

.

2.1.3 Network training

The dataset consisting of the pre-processed images is divided into a training set consisting of 80%
of the data and a validation set consisting of 20% of the data.

The CNN architecture is made from scratch and consists of only three convolutional layers and
max pooling is used after every convolution to reduce the learned features size. A dropout layer is
also used to generalise the trained model. Stochastic gradient descent with momentum is used as
optimisation method during training. The initial learning rate is 0.01 and the batch size is 32.

The best trained model is able to classify 90.74% of the validation set correctly. This model is
only 16 layers deep and trained with 30 epochs.

2.2 Segmentation

In this section, we discuss the application of food image segmentation, more specifically of pizzas.
This is a very specific application where traditional segmentation usually falls short of. Therefore,
this section explains the stick growing and merging (SGM) algorithm, which is capable of segmenting
complex food images. SGM consists of 4 major steps: stick initialisation, stick merging, subregion
merging and boundary modification. These steps as well as some experimental results are discussed
in the following sections [2].

2.2.1 Stick Initialisation

The goal of this step is to obtain the initial sticks. A stick is defined as a horizontal line where the
pixels are homogeneous. The ends of these sticks correspond to edge points.

This step starts with traversing the image from the top-left to bottom-right. Adjacent pixels on
a single row are compared and the intensity differences are put in a histogram as shown in Figure
2.2. The area under the curve can be divided into a stick area and a non-stick area based on the
homogeneity criterion C.

C1 : |.131 —.1‘2| < Tl, (1)

where z1 and zo are the intensities of adjacent pixels and T3 is the global information, which
partitions the area. Within a row, the value of T} (row) can be different.
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Figure 2.2: Difference histogram [2].

Based on (i, the algorithm traverses the image again and stores the stick lengths with the
corresponding number of pixels in another histogram. Based on this, the maximum stick length
Linar can then be determined. This is a limitation to ensure that a stick does not cross multiple
regions.

The algorithm then obtains an edge image and starts with growing sticks from homogeneous
pixels. Edge points can function as starting seeds for the sticks. The stick is confirmed if the length
is bigger than L,,;,. The growing process is stopped when the stick reaches another edge point or
C1 is not satisfied. The information about the start and stop indices of the sticks is stored in stick
arrays while the up and down relationships of the sticks are stored in the adjacent stick lists.

2.2.2 Stick Merging

In this step, sticks are merged into initial subregions. A stick of a down-row will be merged with its
most homogeneous stick of an up-row if the stick merging criteria Cs,,;,, is satisfied. Co,p4 consists
of the following criteria:

1. The stick-stick homogeneity criterion:
Cassh : |intensity(upstick) — intensity(current)| < min(Ty, Tz), (2)

where T is the global information and 75 is the threshold between sticks that are homogeneous
and inhomogeneous as shown in Figure 2.3.
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Figure 2.3: Stick homogeneity histogram [2].

2. The stick-stick minimal adjacent length:
C?ssa : Lgs = min(T& Lmin)a (3)
where L,,;, is the minimal stick length and T3 is the threshold between adjacent sticks and

least homogeneous parts as shown in Figure 2.4.

Stucks

10% least adjacent sticks

Stick adjacent
lengths

Figure 2.4: Stick adjacent length histogram [2].

3. The subregion-stick homogeneity criterion:
Casrsh @ |intensity(subregion) — intensity(current)| < Ky x min(Ty, Tz), (4)

where K is an adjusting coefficient.
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The algorithm starts with assigning each stick in the first row to a new subregion. Subsequently,
the image is traversed to merge adjacent sticks based on the stick merging criteria Cs,,n. Figure
2.5 illustrates two possible scenarios that can occur. In the first scenario, the current stick is merged
with a single subregion. In the second scenario, the current stick is merged with two subregions,
resulting in the merging of those two subregions.

Subregion 2
Subregson 1 uhregian Subregion 3

Stick b

Figure 2.5: Stick-stick merging cases: only merging to one subregion or to two subregions [2].

2.2.3 Subregion Merging

The next step is to merge smaller subregions into larger subregions. Before this is carried out, four
assumptions are made:

1. Very small subregion should be merged first.
2. Smaller subregions are more likely to be merged first than larger subregions.

3. A subregion should be merged with the subregion where it is most homogeneous too and has
the longest adjacent boundaries with.

4. A subregion should be merged with its larger adjacent subregion if it satisfies a minimal
subregion merging criterion.

The subregion merging step is similar to the stick-stick merging step, but now considering both
up and down adjacent subregions instead of sticks. The subregions are sorted by size and they are
merged when the subregion merging criteria Cj is satisfied. C3 consists of the following scores:

1. The homogeneity score:
Shregion(a'a b) = |I7'egiona - I’regionb|/T’rrha (5)
where I ¢gion is the average intensity of a region and 7., is equal to Kg * man(Ty, Ts).

2. The boundary score:
Sconn(aa b) = (10 - Bshared)/min(Baa Bb)v (6)

where Bgpareq is the length of the shared boundaries and Bi.cgion is the boundary length of
the subregion.
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3. The size score:
Ssize(a7 b) = (Sa/Sb)O‘Ba (7)
where Sycgion is the size of the subregion.

Cj5 is the multiplication of these scores. A score of 0 indicates a definite merging of the subregions,
while a score of 1 indicates no merging of the subregions.

2.2.4 Boundary Modification

Non-stick areas appear as noise or edges, leading to boundary roughness. To mitigate this roughness,
boundary modification can be employed. Figure 2.6 showcases two possible approaches. The first
approach involves merging a non-stick area m that is situated between two horizontal sticks a and
b. In this case, one part of the non-stick area assumes the average intensity of stick a, while the
other part assumes the average intensity of stick b. The second approach aims to fill a larger gap
between 2 sticks a and b by growing pixels towards the center based on a aggregation criterion Cjy.

[ =] ]

Figure 2.6: Boundary modification: attempt 1 (left) and attempt 2 (right) [2].

2.2.5 Experimental Results

The SGM algorithm, when applied to pizza topping segmentation, yields highly satisfactory results.
The algorithm successfully segments the ham, red and green peppers, cheese shreds and tomato
sauce as shown in Figure 2.7.

Figure 2.7: SGM used for pizza topping segmentation: the original image, the stick image and the
result after boundary modification [2].
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3 Methodology

The methodology used for this case is explained in detail in this section. Since this case is a
conventional example of a classification problem, a general deep learning methodology framework
is employed. The framework consists of several steps, which are illustrated in Figure 3.1. The first
step involves capturing the data. Section 3.1 discusses how the data is captured and analysed. The
second step, data pre-processing, focuses on preparing the dataset for training. This is discussed in
more detail in Section 3.2. Section 3.3 provides more detailed information on various pre-trained
models that are suitable for our classification problem. The retraining of the pre-trained models is
explained in Section 3.4. Finally, a proper evaluation measure is chosen and discussed in Section
3.5. As you can see, the methodology framework used in our use case is similar to the one discussed
in Section 2.1.

To enhance the explainability of our models, the K-means segmentation algorithm is explained
in Section 3.6.

Capture Pre-process Select Train Evaluate
N oa @ 2N
A © o s &

+ Collectice cream
cone image data

+ Prepare the image

data for training

+ Select CNN models

suitable for

« Transfer learning
« Binary

- Accuracy
« Precision &recall

+ Analyse & label * Background classification classification « Flscore
data removal * Multi-label
+ Cropping classification

+ Normalisation
« Data

augmentation

W\ hogeschool
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Figure 3.1: General deep learning methodology framework.
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3.1 Data Capturing

Image data of ice cream cones is captured by Ysco and labelled by experts at the company. First,
an in-depth look will be provided in the process of capturing the image data, including the hardware
used and the content of the image data. Subsequently, the process of labelling the data will be
explained.

The data is captured using a Panasonic Lumix DMC-SZ10 camera in combination with a PULUZ
lighting box that has a ring light with LED’s. Both the camera and lighting box are shown in Figure
3.2. The captured images are RGB images with a width of 4608 pixels and a height of 2592 pixels.
A single image requires 2.72 MB of storage capacity. The data contains both good and bad quality
samples of three ice cream cones variants, namely:

1. Vanilla ice cream with chocolate sauce and bresilienne nuts.
2. Strawberry ice cream with strawberry sauce.

3. Chocolate ice cream with chocolate sauce and curls.

ol 1T

Figure 3.2: PULUZ lighting box with LED ring light and Panasonic Lumiz DMC-SZ10 camera [3]
[4].

The ice cream cones are handcrafted in laboratory conditions to showcase the different possible
quality stages of the ice cream cones. Figure 3.3 shows some examples of the original raw images for
the three variants, with good and bad quality samples in the left and right columns, respectively.

After obtaining the image data, the next step is to label those images. The main label provided
by the experts is the quality rating of the ice cream cones: good or bad. The two main indicators that
influence the quality is the quantity and the coverage of the sauce and the nuts/curls. Therefore,
the experts also provided us sub-labels based on the coverage of the two indicators. A summary of
all the different images for the three variants with their respective labels is shown in Table 3.1.

W\ hogeschool
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Figure 3.3: Raw data: good and bad quality samples.

This data is suitable for experimental purposes and exploring the ease of training a neural
network for this case. However, when looking to deploy the trained model, image data directly
from the production line is required. The ice cream cones in the production line are viewed by the
camera at a fixed point of view and have a fixed size on the image data. When this is different, as
in the provided image data by Ysco, it may result in a lot of faulty predictions and therefore a poor
performance of the trained model. Therefore, it is crucial to capture the training data as close as
possible to the real circumstances under which the real data will be captured from to ensure optimal
performance of the trained model.

W\ hogeschool
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Variant Description Amount | Quality | Coverage sauce | Coverage nuts/curls

1 Og sauce, Og nuts 2 Bad Bad Bad
2g sauce, 2g nuts 2 Good Good Good

2g sauce, 2g nuts 2 Bad Good Bad

2g sauce, 2g nuts 2 Bad Bad Good

2g sauce, 1.5g nuts 2 Good Good Good

2g sauce, 0g nuts 2 Bad Good Bad

Og sauce, 2g nuts 2 Bad Bad Good

2 Og sauce 2 Bad Bad n/a
4g sauce 4 Good Good n/a

4g sauce 4 Bad Bad n/a

4g sauce 2 Bad Bad n/a

2.5g sauce 2 Bad Bad n/a

3 Og sauce, Og curls 2 Bad Bad Bad
2g sauce, 1.5g curls 2 Good Good Good

2g sauce, 1.5g curls 2 Bad Bad Bad
2g sauce, 1g curls 2 Good Good Good

2g sauce, 1.5g curls 2 Bad Good Bad

2g sauce, 0g curls 2 Bad Good Bad
Og sauce, Og curls 1 Bad Bad Good

Table 3.1: Original raw data with labels.

3.2 Data Pre-processing

Data pre-processing is a crucial step in vision applications that involves transforming raw image
data into a form that can be used to enhance the training of a neural network. This process can
help to improve the performance and the robustness of the trained vision model, resulting in good
predictions for new and unseen data. The pre-processing in this case involves several steps, which
are discussed in more detail in the following sections.

3.2.1 Background Removal

As shown in Figure 3.3, some unwanted reflections can be observed in the background of the raw
data. To fix this issue, the background needs to be removed. Background removal is important
because it clearly defines the object of interest (the ice cream cone) and removes all the irrelevant
information and noise. This will be beneficial for the speed of the model training and also for the
performance of the trained model.

Thresholding cannot be used to remove the background, as in Section 2.1.2, because the back-
ground colour is not distinctively different from the ice cream colour. As a result, an Al-based tool
named rembg is used to detect and to remove the background in the image [5]. An example of
background removal on a raw data image is presented in Figure 3.4. The background is removed
generally well. Some ice cream cones still have some background, such as the coloured side of the
packaging, present. In such cases, manual removal of the background can be performed.

W\ hogeschool
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Figure 3.4: Background removal of raw data of the vanilla variant.

3.2.2 Cropping

Each image contains 6 individual ice cream cones. However, the images are captured from different
positions and angles, resulting in variable sizes and positions of the cones on the image. Therefore,
to obtain these samples, they must be cropped manually, leading to different sizes of the cropped
images.

In Figure 3.5, an example of cropping is shown for the first ice cream cone sample. Table 3.2
provides a summary of the number of individual samples with their respective labels.

&
®

—

Figure 3.5: Cropping of the first ice cream cone sample.

Variant | Original samples | Quality | Coverage sauce | Coverage nuts/curls
1 12 Bad Bad Bad
24 Bad Good Bad
24 Bad Bad Good
24 Good Good Good
2 60 Bad Bad n/a
24 Good Good n/a
3 12 Bad Bad Bad
24 Bad Good Bad
18 Bad Bad Good
24 Good Good Good

Table 3.2: Cropped original samples with labels.

W\ hogeschool
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3.2.3 Resizing

The crops obtained in the previous pre-processing step have varying image sizes. Therefore, it is
necessary to resize all the crops uniformly. The images of the individual samples are resized to an
image size of 256 x 256 pixels.

Resizing is an important pre-processing step for several reasons. Firstly, it ensures that all images
have the same size, which is a requirement for most deep learning models. Secondly, resizing can
impact the model accuracy and computational cost of training the model. It is important to choose
an image size that is small enough so that every feature that is important for the classification
problem remains visible [6].

3.2.4 Normalisation

Normalisation is a process that changes the range of pixel intensity values in an image. This operation
ensures that images have the same pixel intensity distribution. The normalisation process can be
represented by the following formula:

i — mean
Dij,norm = Z)UW, mean = 0.5 and std = 0.25
S

This formula is applied to each channel of the RGB image.
Normalising image data has several advantages. It induces consistency in the image data, which
is essential for training deep learning models. Secondly, it makes computation more efficient [7].

3.2.5 Data Augmentation

To overcome the issue of limited data availability per variant, data augmentation can be performed.
This technique creates new image samples by applying transformations to the previous image sam-
ples. This not only increases the dataset size but also makes it more diverse. Another benefit of
data augmentation is that it reduces overfitting of the trained model [8].

It is important to apply the right data transformations that are relevant to this case. Two data
transformations are used here:

1. Rotation: different rotations provide different distributions of the sauce and/or nuts/curls.

2. Brightness and contrast: different brightness and contrast settings simulate different lighting
conditions.

An example of three data augmented variants of a cropped image sample is shown in Figure 3.6.

Variant | Original samples | Augmented samples | Total samples | Quality
1 60 600 660 Bad
24 240 264 Good
2 60 600 660 Bad
24 240 264 Good
3 54 540 594 Bad
24 240 264 Good

Table 3.3: Total samples: original 4+ augmented samples.

To increase the dataset size, ten data augmented variants were created for each ice cream cone
sample. Table 3.3 provides an overview of the total number of original and augmented samples.

W\ hogeschool
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Figure 3.6: Data augmentation: varying rotation, brightness and contrast.

3.3 Model Choice

In this section, we present a selection of Convolutional Neural Network (CNN) models suitable for
classification. This selection is based on the performance and complexity of the model architectures.

Since PyTorch is used as a framework in this paper, the selection consists of models available
in torchvision.models. The documentation of torchvision.models shows us the different classification
models with their corresponding top-1 and top-5 accuracy on the ImageNet dataset. The four CNN
models that we will use here as well as their top-1 and top-5 accuracy are presented in Table 3.4.

Next, we will discuss the architectures of the selection of models consisting of the ResNet 34,
ResNet 50, VGG 19 and EfficientNet B7 models.

CNN model | Top-1 acc | Top-5 acc
VGG 19 72.376 90.876
ResNet 34 73.314 91.420
ResNet 50 76.130 92.862

EfficientNet B7 84.122 96.908

Table 3.4: CNN classification models with the top-1 and top-5 accuracy [9].

3.3.1 VGG 19

VGG 19 is an image classification model pre-trained on the ImageNet dataset. This model is
proposed in the paper ” Very Deep Convolutional Networks for Large-Scale Image Recognition” [10].

In this paper, the relationship between the neural network depth and accuracy is studied. The
results show that increasing the depth of the network while using relatively small convolution filters
(3x3 filters) leads to an improvement in accuracy. The VGG 19 architecture shown in Figure 3.7 was
developed as a result of this work. This model comprises 16 convolutional layers with 3x3 filters and
3 fully connected layers. The last fully connected layer produces 1000 values, each corresponding
to a class in the ImageNet dataset. By applying a softmax operation to these values, a probability
score is obtained for each class.

W\ hogeschool
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Figure 3.7: VGG 19 architecture [11].

Despite its improved accuracy, VGG 19 has some disadvantages. The model has 144 million
trainable parameters, which makes training such a network from scratch very slow. Furthermore,
storing these weights requires a significant amount of storage space.

3.3.2 ResNet 34

ResNet 34 is an image classification model that is also pre-trained on the ImageNet dataset. The
architecture is described in the paper ”"Deep Residual Learning for Image Recognition” [12].

In general, it is believed that the deeper a CNN, the better its performance. This is because
deeper CNNs have more layers and therefore more parameters and features that can be learned.
However, further research has shown that this is not always true. Suppose that you have a network
of n layers. Copying the n layers and adding an extra identity mapping layer will result in network
with n + 1 layers. We would expect that the network with n + 1 layers would have at least the same
accuracy as the network with n layers. But the training and test error curves for the CIFAR-10

network in Figure 3.8 contradict this.
y\\,\\ow\ié;lfg

20-layer

2

=

56-layer

training error (%)
test error (%)

20-layer

0 1 2 3 4 s 6 0 1

iter. (le4) ’ ilcr.!(le4)‘
Figure 3.8: Training and test error curves for a CIFAR-10 network with 20 and 56 layers [12].
The reason for the worse performance is because direct mappings are hard to learn. Instead of

learning the mapping from x to H(x), it is better to learn the residual F(x) = H(x) - x. To calculate
, we just add the residual F(x) to the input. This results in the ResNet block in Figure 3.9.

W\ hogeschool
17
MVlves



identity

Figure 3.9: ResNet block [12].

Figure 3.10 illustrates the architecture of ResNet 34. Each ResNet block is composed of a series
of layers and a shortcut connection. The ResNet 34 model has 34 layers, with the last one being a
fully connected layer which is responsible for the classification of the image.

34-layer residual

Figure 3.10: ResNet 34 architecture [12].

3.3.3 ResNet 50

ResNet 50 is a variant of the ResNet model that has 50 layers, making it deeper than the ResNet 34
variant. The addition of more shortcut connections in ResNet 50 should lead to a better performance

compared to ResNet 34.

3.3.4 EfficientNet B7

EfficientNet B7 is a CNN that is developed by Google Al and pre-trained on the ImageNet dataset.
The model is proposed in the paper ”EfficientNet: Rethinking Model Scaling for Convolutional
Neural Networks” [13].

The paper introduces a method called compound scaling that scales depth, width and image
resolution of a CNN to ahcieve better performance and efficiency. Figure 3.11 illustrates this concept.
The paper also introduces a new baseline model called EfficientNet. EfficientNet B7 is an upscaled
version of the base model that is 8.4x smaller and 6.1x faster than the best existing CNN at the

time.

W\ hogeschool
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Figure 3.11: Upscaling of a CNN model: a) baseline network example, b) - d) conventional scaling
and e) compound scaling [13].

3.4 Model Training

In this use case, we do not have to build and train classification models from scratch. Instead, we use
transfer learning on the pre-trained models presented in Section 3.3. Transfer learning is a method
that adapts a model trained on a specific problem to your own custom problem. Here, we copy the
convolutional layers and their weights but change the fully connected layers so that they output
probability values for the classes in our problem. When we retrain our model, the convolutional
layer weights are frozen while the fully connected layer weights are trained. To prevent overfitting,
the model that performs best on the validation data during the entire training procedure is stored.
Because we apply stochastic gradient descent, we also have to define a batch size. This determines
the number of data samples that are randomly chosen to update the gradient per epoch. We use
a learning rate step scheduler which decreases the learning rate with a factor § after a predefined
amount of epochs.

Inpu:

Pretrained
Model

Common inner layers —_—>]

—
o 8

Custom
Model

l<— Custom final Iayers——’l

Figure 3.12: Transfer learning: the convolutional layers are copied while the fully connected layers
are changed to match our custom problem [14].
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For this use case, we propose two different approaches. The first approach is rather simple and
intuitive. The main solution of this case lies in detecting whether the ice cream cone is of good or
bad quality. This can be translated into a binary classification problem. The second approach
tries to give more insights into why the ice cream cone is of poor quality, namely a fault based on
the sauce or nuts/curls distribution. Therefore, a multi-label classification model is trained as a
for this approach. The multi-label classification model will predict a label for the sub-classes being
the sauce and the nuts/curls class. The quality prediction is then determined by using the logical
AND operation on the labels for both sub-classes. All the different possibilities are shown in Table
3.5. This approach is a way of introducing explainability in our Al models.

Quality | Sauce | Nuts/Curls
Good Good Good
Bad Bad Good
Bad Good Bad
Bad Bad Bad

Table 3.5: Quality labels based on the sauce and nuts/curls sub-labels .

The dataset obtained by the pre-processing steps (see Table 3.3) is divided into training and
validation sets. Initially, this is done in a 70-30 ratio. However, in this case, we also vary the size of
the training set to determine how much data is required to train a good model.

To determine how hyperparameters such as the learning rate, batch size and amount of training
epochs affect our model, we vary these parameters. The best values are then used to train a final
model.

3.5 Model Evaluation
Accuracy is often used to evaluate the performance of a model. The formula for the accuracy is:

(TP +TN)

(TP +TN + FP + FN) ®

Accuracy =

However, when the dataset is imbalanced, accuracy can give a distorted view of the model’s perfor-
mance. Therefore, additional metrics should be considered.

The first metric that we use is precision. Precision is the percentage of correctly predicted
positives out of the total number of predicted positives [15]. The formula is:

TP
PTCCiSiOTl = m (9)

The second metric that we use is recall. Recall is the percentage of the correctly predicted

positives out of the total number of actual positives [15]. The formula is:

TP
- 1
Recall TP+ FN) (10)

At last, we use the F1 score which is the harmonic mean of both the precision and recall values
[15]. the formula is:

Precision.Recall
F1 = 2. 11
seore Precision + Recall (11)
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These metrics have the advantage of focusing only on the relevant group (positives). This ensures
that we do not get a distorted view due to correct predictions of irrelevant samples (negatives) that
have a dominant share in our dataset.

3.6 K-means Segmentation

In addition to training a CNN, we also want to investigate the added value that segmentation can
provide. We use K-means segmentation instead of setting the RGB threshold for both sauce and
nuts/curls manually. K-means segmentation divides the image into k segments of similar colour.
The following are steps involved in K-means clustering [16]:

1. Choose the number of clusters k.

2. Randomly initialise the cluster centers.

Assign each pixel to a cluster based on the RGB value distance.
Update the cluster centers.

Repeat steps 3 and 4 until convergence.

A S

Create the segmented image.

Dividing the image into multiple segments makes it easier to locate the sauce and nuts/curls.
Using their respective segment mask, we can calculate several different metrics such as the centroid,
size and position relative to the ice cream cone center.
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4 Results

In this section, we present the results of our experiments. First, we show the results of our binary
classification approach in Section 4.1. Next, we present the results of our multi-label classification
approach in Section 4.2. Finally, we show the results of the K-means segmentation in Section 4.3.
We do this for all three variants. It is important to note that in our case, the bad quality ice cream
cones are considered as positives, as this group is the most relevant for us to detect. The good
quality ice cream cones are considered as negatives. In practice, the positives will be more frequent
than the negatives. However, this is not reflected in Table 3.3.

4.1 Binary Classification

The results of our binary classification models for the three variants are presented in the following
sections. We demonstrate the influence of the hyperparameters, namely epochs, batch size, and
learning rate, using metrics defined in Section 3.5. Additionally, we present accuracy and loss curves
for both the training and validation sets, as well as confusion matrices.

We vary the hyperparameters for the vanilla variant for each model architecture in Section 4.1.1.
We then select the model architecture and the tuned hyperparameters with the best results to train
a model for the strawberry and chocolate variants in Sections 4.1.2 and 4.1.3, respectively. If the
values of the hyperparameters are not specified, then we use default values in our training procedure.
Specifically, we use 10 training epochs, a batch size of 10, and a learning rate of 0.01.

4.1.1 Variant 1 - Vanilla

First, we train models for the four architectures for a varying number of training epochs. This
results in three models per architecture. The results for these models are presented in Table 4.1.
The trained models perform well across all architectures. The model based on the ResNet 50
architecture achieved the best F1 score (96.93%) when trained for 20 epochs. However, we observe
that training for a bigger number of epochs does not always result in the best model. For example,
we see that with the ResNet 34 and EfficientNet B7 architectures, we have already trained a model
after 5 epochs that is better than for 10 or 20 epochs. The results also demonstrate that a more
complex and deeper model is not always the better option. For instance, EfficientNet B7 has a more
complex and deeper architecture but achieved an F1 score of 96.91%, which is about 2% lower than
the simplest architecture here, namely VGG 19.

Next, vary the batch size to observe its impact on model training. We expect that increasing
the batch size will have a positive impact on the model training, as more data samples are used to
update the gradient. However, this will make the training slower. The results of the varied batch
size are presented in Table 4.2. We indeed see that a larger batch size has a positive effect on the
model. For the VGG 19, ResNet 34 and EfficientNet architectures, we obtain the best F1 score
when training with a batch size of 20. This is not the case for the ResNet 50 architecture, where the
best F1 score is obtained when training with a batch size of 5. A possible reason for this is that the
batches of 5 consisted of more informative data samples than the batches of 20 for the ResNet 50
architecture. In Table 4.3, we show for each architecture the training loss and accuracy curves for
the different batch sizes. The loss and accuracy for a batch size of 20 is already initially lower than
the other batch sizes. Furthermore, the loss curves for the batch size of 20 remain lower than curves
for other batch sizes, while the accuracy curves for the batch size of 20 remain higher than curves for
other batch sizes. This shows that a larger batch size leads to a model with a better performance.
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Model # epochs | Precision (%) | Recall (%) | F1 score (%)

VGG 19 5 98.96 97.95 98.45
10 98.96 97.95 98.45

20 98.97 98.97 98.97

ResNet 34 5 97.98 99.49 98.73
10 96.98 98.97 97.97

20 97.00 99.49 98.23

ResNet 50 5 98.40 94.87 96.61
10 97.98 99.49 98.73

20 98.98 99.49 99.23

EfficientNet B7 5 97.41 96.41 96.91
10 97.88 94.87 96.35

20 97.84 92.82 95.26

Table 4.1: The precision, recall and F1 score for a variation (5, 10 and 20) of training epochs.

Model Batch size | Precision (%) | Recall (%) | F1 score (%)

VGG 19 5 98.46 98.46 98.46
10 98.97 98.46 98.71

20 98.97 98.46 98.71

ResNet 34 5 96.04 99.49 96.91
10 97.46 98.46 97.96

20 97.46 98.46 97.96

ResNet 50 5 97.00 99.49 98.23
10 98.96 97.44 98.19

20 98.45 97.95 98.20

EfficientNet B7 5 95.00 97.44 96.20
10 96.92 96.92 96.92

20 97.93 96.92 97.42

Table 4.2: The precision, recall and F1 score for a variation (5, 10 and 20) of batch sizes.

Finally, we vary the learning rate to observe its impact on model training. Usually, in most
cases, a default value of 0.01 is taken as the learning rate. The results of the varied learning rate
are presented in the Table 4.4. We see that a learning rate of 0.01 provides a better F1 score for the
ResNet 34, ResNet 50 and EfficientNet B7 architectures. The VGG 19 architecture does not follow
the majority as it has a better F1 score for a learning rate of 0.1. In Table 4.5, we show for each
architecture the training loss and accuracy curves for the different learning rates. In general, the
curves show that a learning rate of 0.1 results in a higher loss but not necessarily a lower accuracy.
The curves for a learning rate of 0.01 consistently have a loss approaching 0 and the highest accuracy.
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VGG 19: influence of the batch size
loss accuracy

14 4 —e— batch=75 X
—e— batch =10
—&— batch = 20

—8— batch=5
—e— batch =10
—e— batch =20

0 2 4 6 8 0 2 4 6 8

ResNet50: influence of the batch size
loss accuracy

2.5
—8— batch=5

—e— batch =10
—e— batch =20

2.04

. v\_('—/‘%"
0.90 4

—8— batch =5
—8— batch =10

151

101

0.5 1

—e— batch = 20
0.0 1

0 2 4 6 8 0 2 4 6 8

ResNet34: influence of the batch size

loss

accuracy

—e— batch=5
—e— batch =10

—e— batch =20 | %37

—8— batch=5
—e— batch =10
—e— batch =20

0 2 4 6 8

EfficientNet B7: influence of the batch size

loss

accuracy

—8— batch=5
—e— batch =10 |
—e— batch =20

—8— batch=5
—8— batch =10

—e— batch =20

0 2 4 6 8

Table 4.3: Influence of the batch size on the training loss and accuracy curves.

Model Learning rate | Precision (%) | Recall (%) | F1 score (%)

VGG 19 0.001 98.45 97.44 97.94
0.01 97.98 99.49 98.73

0.1 98.48 99.49 98.98

ResNet 34 0.001 97.44 97.44 97.44
0.01 95.57 99.49 97.49

0.1 97.41 96.41 96.91

ResNet 50 0.001 97.97 98.97 98.47
0.01 98.48 100.0 99.24

0.1 97.49 99.49 98.48

EfficientNet B7 0.001 96.32 93.85 95.06
0.01 96.48 98.46 97.46

0.1 97.42 96.92 97.17

Table 4.4: The precision, recall and F1 score for a variation (0.001, 0.01 and 0.1) of the learning

rate.
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VGG 19: influence of the learning rate ResNet34: influence of the learning rate
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Table 4.5: Influence of the learning rate on the training loss and accuracy curves.

An additional important insight that we want to show here is the amount of data we really need
to obtain a model with a decent performance. We use the same training and validation datasets
as before. Here, we successively take certain subsets in decreasing size of the training set and
evaluate the performance of the models trained on these subsets. The results are shown in Table
4.6. We observe that training a model on a smaller dataset has a negative impact on its performance.
Although there is a decrease in performance, we see that this decrease is rather limited in our case.
It is then important to compare the cost of obtaining additional labelled data and weigh it against
the cost of incorrect classifications.

Model | Training set size | Precision (%) | Recall (%) | F1 score (%)
ResNet 50 159 (25%) 95.41 95.90 95.65
319 (50%) 97.41 96.41 96.91
478 (75%) 97.01 100.0 98.48
638 (100%) 98.48 100.0 99.24

Table 4.6: The precision, recall and F1 score for a varying size (25%, 50%, 75% and 100%) of the
training set.

Based on our experiments, we conclude that the models based on the ResNet 50 architecture
produces the best results. We only need 10 epochs to train a model that meets our expectations.
The values we ultimately choose for the batch size and learning rate are 20 and 0.01, respectively.
We train a ResNet 50 model with these hyperparameters to obtain the best model for the binary
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classification of the vanilla variant. A confusion matrix of the predictions on the validation set is
shown in Fig. 4.1. The model only predicts 3 ice cream cones incorrectly, which can be classified as
false positives. This results in a high F1 score of 99.24%.

195

-175

-150

Actual bad

125

100

75

50

Actual good

25

i i
Predicted bad Predicted good

Figure 4.1: Confusion matrix of the ResNet 50 binary classification model for the vanilla variant,
trained with a learning rate of 0.01 and batch size of 20..

4.1.2 Variant 2 - Strawberry

First, we start by training a ResNet 50 model with a batch size of 20 and a learning rate of 0.01 for
this variant. However, the model performs less well for the strawberry variant than for the vanilla
variant. Other architectures and hyperparameters are tested without obtaining an improvement.
Therefore, we use the ResNet 50 model.

Further analysis indicates that the model struggles to classify ice cream cones of good quality.
Figure 4.2 illustrates this. The presence of bad quality ice cream cones in the dataset, which have
a good sauce coverage but an insufficient amount of it, is a possible reason for this. The model is
unable to detect the amount of sauce and hence uses the coverage as an indicator of bad quality. As
a result, some good quality ice cream cones are misclassified. We conclude that the limiting factor
is nor the architecture nor the hyperparameters but rather the information provided by the image
data.
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Predictions of the strawberry ice cream cones quality
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Figure 4.2: Incorrect predictions by the ResNet 50 model for the validation set of the strawberry ice
cream cones

The best model obtained for the strawberry variant is a ResNet 50 model trained with a batch
size of 20 and a learning rate of 0.01. This model has an F1 score of 95.80%. The performance metrics
for this model are presented in Table 4.7. Additionally, a confusion matrix of the predictions on
the validation set is shown in Fig. 4.3. The model mainly predicts ice cream cones of good quality
incorrectly.
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Figure 4.3: Confusion matrix of the ResNet 50 binary classification model for the strawberry variant,
trained with a learning rate of 0.01 and batch size of 20.

4.1.3 Variant 3 - Chocolate

First, we start by training a ResNet 50 model with a batch size of 20 and a learning rate of 0.01
for this variant. The model performs less well for the chocolate variant than for the previous two
variants. Other architectures and hyperparameters are tested without obtaining an improvement.
Therefore, we use the ResNet 50 model trained for 15 epochs instead of 10.

Further analysis indicates that the model struggles to classify both good and bad quality ice
cream cones. Figure 4.4 illustrates this. It is evident that the chocolate curls are challenging to
distinguish when they are on top of the chocolate sauce, particularly when the brightness is low.
This highlights the importance of proper lighting when capturing data. Doing so can ensure that the
distinction between the chocolate sauce and curls is clearer, resulting in better model performance.
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Predictions of the chocolate ice cream cones quality
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Figure 4.4: Incorrect predictions by the ResNet 50 model for the validation set of the chocolate ice
cream cones

The best model obtained for the chocolate variant is a ResNet 50 model trained with a batch size
of 20 and a learning rate of 0.01. This model has an F1 score of 94.68%. The performance metrics
for this model are presented in Table 4.7. Additionally, a confusion matrix of the predictions on the
validation set is shown in Figure 4.5.
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Figure 4.5: Confusion matrix of the ResNet 50 binary classification model for the chocolate variant,
trained with a learning rate of 0.01 and batch size of 20.

Variant | Model | Precision (%) | Recall (%) | F1 score (%)
1 ResNet 50 98.48 100.0 99.24
2 ResNet 50 94.17 97.94 95.80
3 ResNet 50 94.94 94.41 94.68

Table 4.7: The best binary classification models for the three variants.
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4.2 Multi-label Classification

The results of our multi-label classification models for the vanilla and chocolate variants are presented
in Sections 4.2.1 and 4.2.2, respectively. The strawberry variant is excluded from this approach
because its ice cream cones contain only sauce. The performance is evaluated using the metrics
defined in Section 3.5 and visualised in the form of confusion matrices. We primarily discuss the
performance of the multi-label classification models and compare it to that of the binary classification
models of the same variant.

For both variants, we use a multi-head ResNet 50 model with 10 training epochs, a batch size of
10 and a learning rate of 0.01. It is worth noting that these hyperparameters are similar to the best
hyperparameters found in Section 4.1.

4.2.1 Variant 1 - Vanilla

The performance metrics of the best multi-label classification model obtained for the vanilla variant
are shown in Table 4.8. The predictions for both sub-classes have a high F1 score, indicating that our
model can predict the labels of the sauce and nuts classes very well. Consequently, the predictions of
the quality class also have a high F1 score. Figure 4.7 shows the confusion matrices of the predictions
on the validation set for all three classes. The two sub-classes have a total of five individual incorrect
predictions, resulting in the same number of incorrect predictions for the quality class.

Model Label | Precision (%) | Recall (%) | F1 score (%)
ResNet 50 | Sauce 98.31 99.15 98.72
Nuts 99.07 99.07 99.07
Quality 98.45 98.96 98.71

Table 4.8: The precision, recall and F1 score for the sauce, nuts and quality class.

The incorrect predictions for the sub-classes are shown in Figure 4.6. The reason for the model’s
incorrect predictions is not immediately visible since the ice cream cone images are unambiguous.
However, the lower brightness of three out of five images may be a possible reason why the model
has difficulty predicting the correct label for both sub-classes.

Multi-label predictions of the vanilla ice cream cones

Predicted sauce, nuts:  Predicted sauce, nuts:  Predicted sauce, nuts:  Predicted sauce, nuts:  Predicted sauce, nuts:

Bad, Good Bad, Good Good, Bad Good, Good Good, Good
Actual sauce, nuts: Actual sauce, nuts: Actual sauce, nuts: Actual sauce, nuts: Actual sauce, nuts:
Good, Good Good, Good Good, Good Good, Bad Bad, Good

100
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Figure 4.6: Incorrect predictions by the ResNet 50 multi-label classification model for the validation
set of the vanilla ice cream cones
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Figure 4.7: Confusion matrices of the ResNet 50 multi-label classification model for the vanilla
variant.
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Subsequently, we compare the performance of the binary and multi-label classification models by
comparing the F1 score of the quality class for both models. The F1 score for the binary classification
model is 99.48%, while the F1 score for the multi-label classification model is 98.71%. Note that the
F1 score for the binary classification model is higher than what the Table 4.7 represents. This is
because the binary classification model here is applied to the validation dataset that was used when
training the multi-label classification model. While the binary classification model performs slightly
better, using a multi-label classification model offers additional benefits such as finding the cause of
the poor quality. This way, the problem can be tackled en resolved more quickly.

4.2.2 Variant 3 - Chocolate

The performance metrics of the best multi-label classification model obtained for the chocolate
variant are shown in Table 4.9. The predictions of the sauce class have a significantly higher F1
score than the predictions of the curls class. As a result, the F1 score of the quality class predictions
is limited by the lower F1 score of the curls class predictions. Figure 4.8 shows the confusion
matrices of the predictions on the validation set for all three classes. The two sub-classes have a
total of thirty-four individual incorrect predictions, but this does not necessarily result in the same
number of incorrect predictions for the quality class. To explain this phenomenon, let’s consider an
ice cream cone with 2 bad labels for both sub-classes, resulting in a bad quality label. Suppose that
the model predicts a good label for the sauce class and a bad label for the curls class, then this will
also result in a bad quality label. This example demonstrates that an incorrect prediction in one or
both sub-classes does not necessarily lead to an incorrect prediction of the quality class.

Model Label | Precision (%) | Recall (%) | F1 score (%)
ResNet 50 | Sauce 96.23 94.44 95.33
Curls 94.84 90.18 92.45
Quality 94.09 95.63 94.85

Table 4.9: The precision, recall and F1 score for the sauce, curls and quality class.

A sub-selection of the incorrect predictions for the sub-classes are shown in Figure 4.9. Here, we
can observe again that the chocolate curls are difficult to distinguish from the chocolate sauce in
general. A lower brightness enhances this effect. Therefore, the labels of many lower brightness ice
cream cone images are difficult to predict, as shown in the Figure 4.9.

Similar to the vanilla variant, we also compare the performance of the binary and multi-label
classification models based on their F1 scores. The F1 score for the binary classification model is
97.28%, while the F1 score for the multi-label classification model is 94.85%. Note that the F1 score
for the binary classification model is higher than what Table 4.7 represents. This is because the
binary classification model here is applied to the validation dataset that was used when training the
multi-label classification model. The binary classification model performs significantly better than
the multi-label classification model. A trade-off must be made here between the additional benefits
that a multi-label classification model offers and the better performance of the binary classification
model.
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Figure 4.8: Confusion matrices of the ResNet 50 multi-label classification model for the chocolate
variant.

W\ hogeschool
34
EEZZlvives



Multi-label predictions of the chocolate ice cream cones

Predicted sauce, curls:  Predicted sauce, curls:  Predicted sauce, curls:  Predicted sauce, curls:  Predicted sauce, curls:
Bad, Bad Good, Bad Good, Bad Bad, Good Bad, Good
Actual sauce, curls: Actual sauce, curls: Actual sauce, curls: Actual sauce, curls: Actual sauce, curls:
Bad, Good Good, Good . Bad, Bad Good, Good Bad, Bad
-~

Predicted sauce, curls:  Predicted sauce, curls:  Predicted sauce, curls:  Predicted sauce, curls:  Predicted sauce, curls:
Good, Good Bad, Good Good, Bad Bad, Good Good, Bad
Actual sauce, curls: Actual sauce, curls: Actual sauce, curls: Actual sauce, curls: Actual sauce, curls:
Good, Bad . Bad, Bad . Bad, Bad . Good, Good . Bad, Bad

Predicted sauce, curls:  Predicted sauce, curls:  Predicted sauce, curls:  Predicted sauce, curls:  Predicted sauce, curls:
Bad, Good Good, Good Good, Good Good, Good Bad, Good
Actual sauce, curls: Actual sauce, curls: Actual sauce, curls: Actual sauce, curls: Actual sauce, curls:
Bad, Bad Good, Bad Good, Bad Bad, Bad . Bad, Bad

Predicted sauce, curls:  Predicted sauce, curls:  Predicted sauce, curls:  Predicted sauce, curls:  Predicted sauce, curls:
Bad, Good Good, Bad Good, Good Bad, Good Bad, Good
Actual sauce, curls: Actual sauce, curls: Actual sauce, curls: Actual sauce, curls: Actual sauce, curls:

Bad, Bad Bad, Bad . Good, Bad . Good, Good . Bad, Bad

250

Figure 4.9: Incorrect predictions by the ResNet 50 multi-label classification model for the validation
set of the chocolate ice cream cones
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4.3 K-Means Segmentation

In the following sections, we show the K-means segmentation results for the three variants. Our
first aim is to segment the sauce and the nuts/curls separately. We then compute the centroid, the
size and the position of the segmentation mask relative to ice cream cone center. We do this for a
good quality sample first. Afterwards, we apply this on different degrees of bad quality samples to
display the extra explainability.

4.3.1 Variant 1 - Vanilla

We first apply K-means segmentation to a good quality sample. The original image and the seg-
mented result are shown in Figure 4.10. The K value, that gives the best result, is 4. The 4
segmentation clusters are:

1. Background

2. Ice cream and packaging

3. Sauce
4. Nuts
. Original image . Segmented image
50 50 4

100 - 100

150 - 150

200 - 200

250 - : . . . : 250 - : . ‘ . :

0 50 100 150 200 250 0 50 100 150 200 250

Figure 4.10: Segmented result of a good quality vanilla sample.

To remove the noise in the segmentation masks, we use morphological transformations. More
specifically, we use the opening transformation. This means that the mask is first eroded and that
result is then dilated. Both operations are done with a 3x3 kernel. Figure 4.11 shows the opening
transformation on both the sauce and nuts masks. It has a better effect on the nuts mask due to the
removing of the sauce contours that are clearly present in the original nuts mask. However, some
non-nut parts remain in the nuts mask. To remove them, we would need a bigger kernel but that
would make the masks less accurate and more blocky.

With the segmentation masks for sauce and nuts, we can now compute different features that
can help us explain why the quality is poor. We start with the calculation of the centroids of both
masks. The centroids are represented by their x and y pixels as seen in Table 4.10. Ideally, the
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Figure 4.11: Opening of the sauce and nuts masks for the vanilla variant.

centroids of both masks should be close to the ice cream cone center. Next, we measure the size
(width and height) of the masks in pixels as an indication of the spread. Finally, we calculate the
Euclidean distances and angles between the centroids and the center. This is visualised in Figure
4.12. The green dot represents the center while the red and blue dots represents the sauce and nuts
centroids, respectively.

We repeat the same steps for vanilla ice cream cones of bad quality. Table 4.10 shows the results.
On the second ice cream cone, the nuts are mostly present at the bottom on the left. The distance
of 66 pixels and the angle of 260° show this. The nuts mask size is remarkably large here. This
is because there are also some nuts at the top of the ice cream cone, which makes the nuts mask
bigger. On the third ice cream cone, the sauce is mostly present at the top on the left. The distance
of 40 pixels and the angle of 146° show this. The last two ice cream cones only contain either sauce
or nuts. It is remarkable that when the sauce is well spread, the distance is up to 9 pixels from the
ice cream cone center. The nuts have a larger distance when spread well because the nuts masks are
more porous than the sauce masks. This is due to the small size of the nuts and the fact that they
are sprinkled more randomly.
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Figure 4.12: Center (green) and centroids (red, blue) of the sauce and nuts masks. The angle
between both are indicated in yellow.

Ice cream cone Sauce mask Nuts mask
CT(x,y) | S(w,h) | POS(d,a) | CT(x,y) | S(w,h) | POS(d,a)
(129,130) | (178,178) (1,180°) (113,115) | (192,175) | (23,139°)
(125,124) | (200,175) (1,90°) (114,190) | (176,157) | (66, 260°)
(97,114) | (146,146) | (40,164°) | (141,152) | (184,188) | (28,283°)
(126,116) | (227,211) (9,84°) n/a n/a n/a
n/a n/a n/a (133,144) | (186,193) | (19,264°)

Table 4.10: The centroids, sizes and positions of the vanilla segmentation masks relative to the
centers of ice cream cones of different qualities.
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4.3.2 Variant 2 - Strawberry

Similar to the vanilla variant, we begin with performing K-means segmentation on a good quality
sample. The original image and segmented image are shown in Figure 4.13. The K value, that gives
the best result, is 3. The 3 segmentation clusters are:

1. Background

2. Ice cream and packaging

3. Sauce
o- Original image - Segmented image

50 50 4
100 - 100 -
150 - 150
200 - 200 -
250 - ‘ ' . . ‘ 250 A : ‘ . .

0 50 100 150 200 250 0 50 100 150 200 250

Figure 4.13: Segmented result of a good quality strawberry sample.

We also apply the opening transformation with a 3x3 kernel. Figure 4.14 shows the opening
transformation on the sauce mask. It removes the little bit of noise that is present in the mask.

Original image Sauce segmentation o Eroded sauce segmentation R Dilated sauce segmentation

o

f

100

150

250
250 0 50 100 150 200 250 o 50 100 150 200 250 0 50 100 150 200 250

Figure 4.14: Opening of the sauce mask for the strawberry variant.

We again compute the different features for the sauce mask. The angle between the centroid
and the center is visualised in Figure 4.15. The green dot represents the center while the red dot
represent the sauce centroid. We repeat the same steps for vanilla ice cream cones of bad quality.
Table 4.10 shows the results.
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Figure 4.15: Center (green) and centroid (red) of the sauce mask. The angle between both are

indicated in yellow.

We repeat the same steps for strawberry ice cream cones of bad quality. Table 4.11 shows the
results. On the second ice cream cone, the sauce is spread too much around the center, causing a
thick accumulation of sauce. This is indicated by the smaller size of the mask. On the third ice
cream cone, the sauce is located on the left half of the cone. The distance of 33 pixels and the angle
of 183° confirm this observation. The mask size also has a small width but large height as can be

seen on the image of that ice cream cone.

Ice cream cone

Sauce mask

CT(x,y) | S(w,h) | POS(d,a)
(133,116) | (178,216) |  (5,53°)
(134,130) | (130,161) | (1,180
(102,132) | (114,212) | (33,183°)

Table 4.11: The centroids, sizes and positions of the strawberry segmentation masks relative to the
centers of ice cream cones of different qualities.
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4.3.3 Variant 3 - Chocolate

Similar to the other variants, we begin with performing K-means segmentation on a good quality
sample. Unfortunately, this does not work as well as with the previous variants. A noticeable
difference between the sauce, nuts and ice cream was present with these variants. Due to the similar
colour of the chocolate sauce and curls, they are segmented as one cluster. Even when increasing the
K value, no clear distinction can be made. For instance, when using a K value of 10, the segmented
image is compared to the original image in Figure 4.16.

Original image Segmented image

100 ~ 100 4
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150 4

200 200 A

250 - -
0 50 100 150

. 250 A . .
250 0 50 100 150

T T T
200 200 250

Figure 4.16: Segmented result of a good quality chocolate sample.

Due to the inability of segmenting the sauce and curls as separate masks, we only will look at
chocolate ice cream cones which contain only either the sauce or the curls. In this way, we will
be still able to compute the different features as with the previous variants. Table 4.12 shows the
results. On the first ice cream cone, the sauce is spread well around the center. This is indicated by
the large size of the mask, the distance of 7 pixels and the angle of 270°. On the second ice cream
cone, the curls are also spread well around the center. The large mask and small distance confirm
this observation.

Ice cream cone Sauce or Curls mask
CT(x,y) | S(w,h) | POS(d,a)
(130,142) | (189,190) (7,270°)
(136,119) | (163,198) (6,9°)

Table 4.12: The centroids, sizes and positions of the chocolate segmentation masks relative to the
centers of ice cream cones of different qualities.
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5 Conclusion

In this report, we have explored the application of Convolutional Neural Networks (CNNs) for
classifying the quality of ice cream cones. This use case is unique as, to our knowledge, no research
has been conducted on it thus far. We have developed a framework that encompasses the creation
of datasets and two different model approaches.

To train a CNN effectively, it is crucial to have an extensive dataset. In cases where the number of
original raw images is limited, as in our case, data augmentation can be used to generate additional
images. The two data augmentation transformations that were found to be relevant for us are
rotations and adjustments in brightness.

Both model approaches have been validated on datasets for three different variants. The binary
classification models of each variant have an F1 score higher than 90%. This also applies to the
multi-label classification models. This performance is good considering that these models are trained
on imbalanced datasets. It is remarkable that a decreasing F'1 score can be observed in the following
order: vanilla, strawberry and chocolate. The main reason for this is because the different toppings
are easier to distinguish from the ice cream and each other. When we compare the performance of the
binary classification model with that of the multi-label classification model of the same variant, we
notice a few percent decrease in the performance of the multi-label classification model. Introducing
more explainability in our models is associated with a decrease in performance.

We also explored the use of K-means segmentation to obtain topping segmentation masks. The
K-means segmentation algorithm is able to create segmentation masks for the toppings of the vanilla
and strawberry variants. Although these masks are relatively rough, they still provide additional
insights into the position and distribution of the toppings. These insights can also be used as an
additional validation of the model’s predictions.

The classification models and the segmentation algorithm encounter challenges when dealing
with the chocolate variant. This is primarily due to the similarity in colour between the chocolate
curls and the chocolate sauce, particularly in the captured image data. To address this issue, it
is crucial to employ a different type of lighting, both in type and colour. By doing so, it will be
possible to capture the distinctions between the curls and sauce more effectively. Consequently, both
the classification models and the K-means segmentation algorithm are expected to exhibit improved
performance.

In future work, capturing image data from the production line could facilitate the training of a
classification model capable of predicting the quality of ice cream cones in industrial environments.
Additionally, the segmentation process can be linked with the multi-label classification model. To
accommodate this integration, the labels should be expanded to include an absent label. This
adjustment is necessary as the segmentation algorithm must be modified when an ice cream cone
does not contain one of the two toppings.
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